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• Momentum distributions

• Space-time distributions
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Glue and the QCD Lagrangian:

• Mediators of the strong interaction

• Determine essential features of QCD

• Asymptotic freedom from gluon loops 
• Dominate structure of  QCD vacuum (χSB)
➡ Quenched LQCD gets hadron masses correct to ~ 10%

• Despite the success of QCD, our knowledge of glue is very 
limited.  We know:

Action (~energy) density 
fluctuations of gluon-fields 
in QCD vacuum  (2.4 
×2.4× 3.6 fm) (Derek 
Leinweber)

LQCD = q̄(iγµ∂µ −m)q − g(q̄γµTaq)Aa
µ −

1
4
Ga

µνGµν
a

2

What do we know about gluons?
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• Hard to “see” glue in the low-energy world
➡ Gluon degrees of freedom “missing” in hadronic spectrum 

➡ Constituent Quark Picture?

• From DIS:
➡ Drive the structure of baryonic matter already at medium-x 

• Crucial players at RHIC and the LHC
➡ Drive the entropy
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The problem with our current understanding

4
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The problem with our current understanding
• Using the Linear DGLAP evolution model:
• Weird behaviour of xG at low-x and low-Q2 in 

HERA data

• xG goes negative
• xG < xS (even though sea quarks come from gluon 

splitting)
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• Using the Linear DGLAP evolution model:
• Weird behaviour of xG at low-x and low-Q2 in 

HERA data

• xG goes negative
• xG < xS (even though sea quarks come from gluon 

splitting)

• More Severe:
• Linear evolution has a built-in high energy 

“catastrophe”

• xG has a rapid rise with decreasing x (and 
increasing Q2) ⇒ violation of Froissart unitarity 
bound

• Must have saturation !!
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The problem with our current understanding
• Using the Linear DGLAP evolution model:
• Weird behaviour of xG at low-x and low-Q2 in 

HERA data

• xG goes negative
• xG < xS (even though sea quarks come from gluon 

splitting)

• More Severe:
• Linear evolution has a built-in high energy 

“catastrophe”

• xG has a rapid rise with decreasing x (and 
increasing Q2) ⇒ violation of Froissart unitarity 
bound

• Must have saturation !!

• What is the underlying dynamics?

4
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Non-linear QCD and Saturation

5

proton

N partons new partons emitted as energy increases
could be emitted off any of the N partons
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• BFKL evolution in x:

• linear

• explosion in colour field at small-x

Non-linear QCD and Saturation
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• BFKL evolution in x:

• linear

• explosion in colour field at small-x

• Non-linear JIMWLK/BK 
equations:

• non-linearity -> saturation

• characterised by the saturation 
scale, QS(x,A)

• arises naturally in the Colour-
Glass Condensate EFT

Non-linear QCD and Saturation
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proton

N partons new partons emitted as energy increases
could be emitted off any of the N partons

proton

N partons any 2 partons can recombine into one
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The Nuclear “Oomph Factor”

6

R ~ A
1/3
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The Nuclear “Oomph Factor”
• Enhancing Saturation effects:

• Probes interact over distances L ~ (2mnx)-1

• For probes where L > 2RA (~ A1/3), cannot 
distinguish between nucleons in front or back of of 
of the nucleus.

• Probe interacts coherently with all nucleons.

6

R ~ A
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The Nuclear “Oomph Factor”
• Enhancing Saturation effects:

• Probes interact over distances L ~ (2mnx)-1

• For probes where L > 2RA (~ A1/3), cannot 
distinguish between nucleons in front or back of of 
of the nucleus.

• Probe interacts coherently with all nucleons.

• Probes with transverse resolution 1/Q2 (<< Λ2QCD) ~ 
1 fm2 will see large colour charge fluctuations.

• This kick experienced in a random walk is the 
resolution scale.

6

R ~ A
1/3
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The Nuclear “Oomph Factor”

7

xG ∝ 1
x1/3

Q2
S ∝

αsxG(x, Q2
S)

πR2
A

xGA ∝ A

(QA
S )2 ≈ cQ2

0(
A

x
)1/3

Simple geometric considerations lead to:

HERA: A dependence:

Nuclear “Oomph” Factor:
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The Nuclear “Oomph Factor”

7

xG ∝ 1
x1/3

Q2
S ∝

αsxG(x, Q2
S)

πR2
A

xGA ∝ A

(QA
S )2 ≈ cQ2

0(
A

x
)1/3

Simple geometric considerations lead to:

HERA: A dependence:

Nuclear “Oomph” Factor:

Enhancement of QS with A: ⇒ non-linear QCD regime 
                                                  reached at significantly lower 
                                                  energy in e+A than in e+p
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The Nuclear “Oomph Factor”

8

e.g. Kowalski, Lappi and Venugopalan, 
PRL 100, 022303 (2008); Armesto et 
al., PRL 94:022002; Kowalski, Teaney, 
PRD 68:114005

More sophisticated analyses 
⇒ confirm (exceed) pocket 
formula for high A
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The Nuclear “Oomph Factor”

8

One would require an energy in e+p 
~ 10-100 x e+A to get to same Q2S

e.g. Kowalski, Lappi and Venugopalan, 
PRL 100, 022303 (2008); Armesto et 
al., PRL 94:022002; Kowalski, Teaney, 
PRD 68:114005

More sophisticated analyses 
⇒ confirm (exceed) pocket 
formula for high A
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4 Key Measurements in e+A Physics
• Momentum distribution of gluons in nuclei?
• Extract via scaling violation in F2: ∂F2/∂lnQ2

• Direct Measurement: FL ~ xG(x,Q2) - requires √s scan
• Inelastic vector meson production (e.g. J/Ψ, ρ)
• Diffractive vector meson production (~ [xG(x,Q2)]2)

• Space-time distribution of gluons in nuclei?
• Exclusive final states (e.g. ρ, J,Ψ)
• Deep Virtual Compton Scattering (DVCS) - σ ~ A4/3

• F2, FL for various impact parameters

• Role of colour-neutral (Pomeron) excitations?
• Diffractive cross-section: σdiff/σtot (~ 10%: HERA e+p; 30%? EIC e+A?)
• Diffractive structure functions and vector meson productions
• Abundance and distribution of rapidity gaps

• Interaction of fast probes with gluonic medium?
• Hadronization, Fragmentation
• Energy loss (charm!!)

9
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Gluon momemtum distributions: i) F2 scaling violation

10
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Gluon momemtum distributions: i) F2 scaling violation
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Gluon momemtum distributions: ii) FL measured directly

11

Preliminary FL measurements

d2σep→eX

dxdQ2
=

4πα2
e.m.

xQ4

[(
1− y +

y2

2

)
F2(x, Q2)− y2

2
FL(x, Q2)

]

FL ~ αs xG(x,Q2)
requires √s scan, Q2/xs = y
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Gluon momemtum distributions: ii) FL measured directly
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d2σep→eX

dxdQ2
=

4πα2
e.m.

xQ4

[(
1− y +

y2

2

)
F2(x, Q2)− y2

2
FL(x, Q2)

]

FL ~ αs xG(x,Q2)
requires √s scan, Q2/xs = y

Here: 
∫Ldt = 4/A fb-1  (10+100) GeV
    = 4/A fb-1  (10+50) GeV
    = 2/A fb-1  (5+50) GeV

statistical error only

x

G
P

b(
x)

/G
d(

x)
Statistical errors for

∫Ldt = 10 fb-1 ≈ 2 year running
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HKM and FGS are "standard" 
shadowing parameterizations that are 
evolved with DGLAP

Syst. studies of FL(A,x,Q2): 
• xG(x,Q2) with great precision 
• Distinguish between models
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4 Key Measurements in e+A Physics
• Momentum distribution of gluons in nuclei?
• Extract via scaling violation in F2: ∂F2/∂lnQ2

• Direct Measurement: FL ~ xG(x,Q2) - requires √s scan
• Inelastic vector meson production (e.g. J/Ψ, ρ)
• Diffractive vector meson production (~ [xG(x,Q2)]2)

• Space-time distribution of gluons in nuclei?
• Exclusive final states (e.g. ρ, J,Ψ)
• Deep Virtual Compton Scattering (DVCS) - σ ~ A4/3

• F2, FL for various impact parameters

• Role of colour-neutral (Pomeron) excitations?
• Diffractive cross-section: σdiff/σtot (~ 10%: HERA e+p; 30%? EIC e+A?)
• Diffractive structure functions and vector meson productions
• Abundance and distribution of rapidity gaps

• Interaction of fast probes with gluonic medium?
• Hadronization, Fragmentation
• Energy loss (charm!!)

12
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• In the “colour dipole” picture:

• virtual photon fluctuates into a qq-bar dipole and scatters 
coherently on the nucleus

• calculate the survival probability of qq-bar pair to propogate 
through the target without interacting

• Calculate by measuring the vector meson cross-section

• pQCD ⇒ survival ~ 1

• dipole models ⇒ ~ x5 smaller

• HERA data limited on this

• b profile of nuclei more uniform

Su
rv

iv
al

 P
ro

ba
bi

lit
y colour opacity colour transparency

Gluon space-time distributions

13
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Role of colour-neutral (Pomeron) excitations

15

Diffractive physics in e+A:

?



DIS 2009: macl@bnl.gov

Role of colour-neutral (Pomeron) excitations

15

Diffractive physics in e+A:

• HERA/ep: 15% of all events are hard diffractive
• Diffractive cross-section σdiff/σtot in e+A ?
➡ Predictions: ~25-40%?      
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Diffractive physics in e+A:

• HERA/ep: 15% of all events are hard diffractive
• Diffractive cross-section σdiff/σtot in e+A ?
➡ Predictions: ~25-40%?      

• Look inside the “Pomeron”
➡ Diffractive structure functions
➡ Exclusive Diffractive vector meson production: dσ/dt ~ [xG(x,Q2)]2 !!

?
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Role of colour-neutral (Pomeron) excitations

15

Diffractive physics in e+A:

xIP = mom. fraction of 
pomeron w.r.t. hadron

• HERA/ep: 15% of all events are hard diffractive
• Diffractive cross-section σdiff/σtot in e+A ?
➡ Predictions: ~25-40%?      

• Look inside the “Pomeron”
➡ Diffractive structure functions
➡ Exclusive Diffractive vector meson production: dσ/dt ~ [xG(x,Q2)]2 !!

• Distinguish between linear evolution and saturation models

?

Curves: Kugeratski, Goncalves, 
Navarra, EPJ C46, 413
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Role of colour-neutral (Pomeron) excitations

• Knowledge of t is important

• small t ⇒ coherent diffraction

• large t ⇒ incoherent diffraction

• Results from STAR UPC Au+Au 
collisions

• coherent diffraction ⇒ t < 0.03 GeV2

• incoherent diffraction  ⇒ t > 0.03 
GeV2

16
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How to measure coherent diffraction in e+A ?

17

A )

Roman Pot

Silicon detector

Bellows

B )

C )

Proton beam line

Z-Y view X-Y view

Figure 2: Schematic layout of a station (like S4, S5 or S6). A) During beam filling and ramping,
the detector planes (labelled “Silicon detector”) are kept outside of the pots and the pots are
placed far from the beam. The zig-zag lines indicate the bellows. B) The detector planes are
inside the pots and the pots are being moved towards the beam. Note the elliptical profile of
the fronts of the pots (X-Y view), which matches the cutout of the detector planes. C) When
taking data, the pots are fully inserted and the detector planes in the upper and lower half of
the station partially overlap in the transverse plane.

21
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How to measure coherent diffraction in e+A ?

• Can measure the nucleus if it is 
separated from the beam in Si 
(Roman Pot) “beamline” detectors
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How to measure coherent diffraction in e+A ?

• Can measure the nucleus if it is 
separated from the beam in Si 
(Roman Pot) “beamline” detectors

• pTmin ~ pAθmin

• For beam energies = 100 GeV/n and 
θmin = 0.08 mrad:

• These are large momentum kicks, 
much greater than the binding 
energy (~ 8 MeV)

• Therefore, for large A, coherently 
diffractive nucleus cannot be 
separated from beamline without 
breaking up

17

species (A) pTmin (GeV/c)

d (2) 0.02

Si (28) 0.22

Cu (64) 0.51

In (115) 0.92

Au (197) 1.58

U (238) 1.90
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How else to measure diffraction in e+A?

18

Method used at HERA:

activity in the proton direction

Large Rapidity Gap Method:

In diffractive events, a large gap 
in rapidity occurs between 
outgoing p and final state 

particles 
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How else to measure diffraction in e+A?

18

Method used at HERA:

activity in the proton direction

Large Rapidity Gap Method:

In diffractive events, a large gap 
in rapidity occurs between 
outgoing p and final state 

particles 

• At HERA: Δη ~7 ⇒ hadronization reduces this to ~2.5

• Pros

• Lots of statistics
• Cons

• Sensitive to hadronization models
• No information on t

Diffractive 
events



DIS 2009: macl@bnl.gov

How else to measure diffraction in e+A?

18

Method used at HERA:

activity in the proton direction

Large Rapidity Gap Method:

In diffractive events, a large gap 
in rapidity occurs between 
outgoing p and final state 

particles 

• At HERA: Δη ~7 ⇒ hadronization reduces this to ~2.5

• Pros

• Lots of statistics
• Cons

• Sensitive to hadronization models
• No information on t

Can this method 
be used at an EIC?

Diffractive 
events
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Large rapidity gaps at an EIC

• Method:

• Use RAPGAP in 
diffractive and DIS modes 
to simulate e+p  collisions 
at EIC energies

• Clear difference between 
DIS and Diffractive modes 
in “most forward particle 
in event” distributions

• Little change in 
distributions with 
increasing energy 

19
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Large rapidity gaps at an EIC

• Efficiency vs Purity:

• Efficiency = fraction of 
diffractive events out of all 
diffractive events in sample

• Purity = fraction of diffractive 
events out of all events in sample

• Possible to place a cut to have 
both high efficiency and high 
purity

• However, reduce the acceptance 
by 1 or 2 units of rapidity and 
these values drop significantly

• Need hermetic detector 
coverage!!
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4 Key Measurements in e+A Physics
• Momentum distribution of gluons in nuclei?
• Extract via scaling violation in F2: ∂F2/∂lnQ2

• Direct Measurement: FL ~ xG(x,Q2) - requires √s scan
• Inelastic vector meson production (e.g. J/Ψ, ρ)
• Diffractive vector meson production (~ [xG(x,Q2)]2)

• Space-time distribution of gluons in nuclei?
• Exclusive final states (e.g. ρ, J,Ψ)
• Deep Virtual Compton Scattering (DVCS) - σ ~ A4/3

• F2, FL for various impact parameters

• Role of colour-neutral (Pomeron) excitations?
• Diffractive cross-section: σdiff/σtot (~ 10%: HERA e+p; 30%? EIC e+A?)
• Diffractive structure functions and vector meson productions
• Abundance and distribution of rapidity gaps

• Interaction of fast probes with gluonic medium?
• Hadronization, Fragmentation
• Energy loss (charm!!)

21
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Interaction of fast probes with gluonic medium
• nDIS:
• Clean measurement in ‘cold’ nuclear matter

• Suppression of high-pT hadrons analogous 
to, but weaker than at RHIC

22
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• Fundamental question:
• When do partons get colour neutralized?

Parton energy loss vs. (pre)hadron 
absorption
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Charm measurements at an EIC

23

• EIC:  allows multi-differential measurements of heavy flavour

• covers and extends energy range of SLAC, EMC, HERA, and JLAB 
allowing for the study of wide range of formation lengths
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Matter at low-x: A truly universal regime?

Radical View: 
•Nuclei and all hadrons have a component of their wave 

function with the same behaviour
•This is a conjecture! Needs to be tested
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- Small-x QCD evolution 
predicts:

QS  approaches universal 
behavior for all hadrons and 
nuclei

⇒ Not only functional form 
f(Qs) universal but even Qs 
becomes the same

A.H. Mueller, hep-ph/0301109
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Summary 
• The study of e+A collisions at an EIC allow us to explore the 

physics of Strong Colour Fields and the nature of non-linear 
QCD and saturation.  We can address the questions:

• What are the momentum distributions of gluons in nuclei?

• Measure F2, FL distributions

• What are the space-time distributions of gluons in nuclei?

• Vector meson survival probability

• What is the role of colour-neutral excitations (Pomerons)?

• Diffractive physics

• How do fast partons interact with cold nuclear matter?

• Measure energy loss of fast-moving hadrons
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